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The nonadiabatic theory is applied to the inelastic S-wave scattering of low-energy electrons from atomic 

hydrogen. The zeroth-order (angle-independent) approximation for excitation of the 2s level from the 
ground state is described by the same equation used to describe elastic scattering below the 2s threshold, 
but with more complicated boundary conditions. The solution has been effected by expanding the wave 
function in terms of separable solutions. With the assumption of reciprocity it is also possible to  obtain the 
2s-2s cross sections. The elastic (1s-1s) cross sections are within 1% of the close-coupling results in the 
triplet case, but are about 20Y0 greater in the singlet case. The inelastic (1s-2s) cross sections are reduced 
about 20Y0 in the triplet case and 20 to 40yo in the singlet case, relative to the close-coupling re Its. 

&: 
I. INTRODUCTION coupling expansion.2-5 The latter has been shown to be 

a variational approximate solution of the zeroth-order 
problem.’ Finally, the implication of our results for 
both the experimental and theoretical determination 
of the total inelastic cross section, uls-28 is discussed in 
Sec. VII. 

N previous papers’ a nonadiabatic theory of elastic 
scattering has been developed and applied, among 

other things, to the low-energy scattering of electrons 
from atomic hydrogen. At present the theory is being 
extended to cover inelastic S-wave scattering, and hence 

I 
-. 

II. ZEROTH-ORDER NONADIABATIC THEORY obtain the scattering cross sections u ~ ~ - - l ~  and u1~-2~ 

above the 2s excitation threshold. This DaDer deals 
* I  

with the solution of the zeroth-order (angle-independent 
or relative s wave) problem described in Sec. I1 of this 
paper. Only a brief review of the nonadiabatic theory 

pointed out in Sec. 111, the elastic scattering cross 
section u28-2a may also be found from OUT dculation if 
i t  is assumed that the reciDr0cit.v condition is fulfilled. 

It will be recalled from I that the nonadiabatic theory 
starts with a decomposition of the S-wave function 

is given since a full desc-iption is to be found in 1. As *(rlrdlZ>=1/rlr2C (21+1)”~l(r172)PZ(Co~12) 7 ( 1 2 e 3 )  
1-0 

from which by substitution into the Schroanger equa- 

The accuracy of the solution is discussed in Secs. I&‘ 
and V. In Sec. VI the nonadiabatic results are presented 
and compared with the results from the 13-23 close- 

* Submitted by one of the authors (H.L.K.) to the faculty of 
the University of North Carolina in partial fulfillment of the re- 
quirement for the degree of Doctor of Philosophy. 

1 A. Temkin, Phys. Rev. Letters 4, 566 (1960) ; Phys. Rev. 126, 
130 (1962). The latter paper will be referred to as I in the text. 
Equations referring to it will be prefixed by a I. 

* R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958). 
*P. G. Burke, H. M. Schey, and K. Smith, Phys. Rev. 129, 

1258 (1963). 
K. Omidvar, in Proceedings of the Third International Conference 

on the Physics of Electronic and Atomic Collisions (North-Holland 
Publishing Company, Amsterdam, to be published). Dr. Omidvar 
has kindly calculated for us the 1s-2s closecoupling results just 
above threshold. Cf. also, K. Omidvar, Phys. Rev. 133, A970 
(1964). 

6 R. Damburg and R. Peterkop, Proc. Phys. Soc. (London) 80, 
1073 (1962). 
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tion an infinite set of coupled two-dimensional differ- 
ential equations results. One defines a zeroth-order 
problem by neglecting the coupling terms of the 2=0 
equation : 

where 
( A 1 2 $ 2 / ~ 2 + ~ ) ~ 0 ( ~ ) ( r 1 ~ 2 ) = O  (rl>rz) , (13.3) 

a2/ar12+az/ar2. 

Our units are lengths in Bohr radii and energy in 
Rydbergs. 

Equation (13.3) can describe only relative s states 
and is therefore also called the relative s problem. In 
this paper we will consider incident electrons with 
energies greater than 10.2 eV. In such cases the target 
atom may be excited to the 2s state by collision. Hence 
the zeroth-order wave function @O(O) will be required to 
have the asymptotic form 

lim @O(O)(rlr2) = [(A/k1) sinklrl+aeililrl] 
Ti-m 

XRl,(r2)+bei12rlR2s(rz) . (2.1) 

For incident electron energies greater than 12.09 eV 
higher s states may be excited and for completeness 
should be included in (2.1). However since each new 
term added to the right-hand side of (2.1) adds greatly 
to the complexity of the problem, only the (1s) and 
(2s) channels are included in our calculation. 

In  (2.1) kl  is the wave number of the incident electron 
and kz= (k12-o.75)1/2 is the wave number of an in- 
elastically scattered electron. The function Rn, (.) equals 
r times the nth radial hydrogenic s state. A is an arbi- 
trary normalization of the incident plane wave, while 
a and b are constants which govern, respectively, the 
elastic and inelastic scattering cross sections. 

The zeroth-order wave function must also obey the 
additional boundary conditions' 

@o'O)(rlrz) 1 r l = r Z = O  triplet, 
(a/an)@o(o)(r1r2) 1 r ,=rz=O singlet, 

(12.6) 

and 
@O(O) (r1,O) = 0. (12.7) 

Here (a/art) is the normal derivative. Equation (12.6) 
simply states the spatial symmetry of the wave 
function : 

cPo(0) (r1rz) = &@O(O) (r2r1) . 
The scattering cross sections obtained from (2.1) 

are 
la12 

In order to ensure conservation of current, the con- 
stants A ,  a, and b are required to obey the relationship 

Im(A*a) = K1 I a [ 2 + K 2  I bl 2 .  (2.4) 

To facilitate the solution of certain nonlinear equa- 
tions which appear in the problem, we let6 

and 
case (i) A =kl(l-iia) , 

a=x+iz2 
b= (k1/kz)llzzei6. (2.5) 

As a check on the calculations the singlet case was 
also solved with' 

and 
case (ii) A = k l  , 

a= (x8i61- 1)/2i 
b = 3 [ ( k l / k z ) ( 1 - x 2 ) ] l ~ 2 e ~ ( 6 1 + 6 2 ) .  

In  both cases the form of b is so chosen that Eq. (2.4) 
was automatically satisfied. Hence the complex numbers 
a and b are fully determined by the real numbers 
Re(a), Im(a), and Arg(b). The method of solution of 
Eq. (13.3) follows that used in I : @ o ( O )  is expanded in a 
series consisting of separable eigenfunctions of (13.3) : 

(2.6) 

The sum plus integral means, as usual, that the con- 
tinuum s states of hydrogen in addition to the discrete 
states must be included. For the discrete states 

Kn= (1-n-2-k 1 )  2 1/2 , 

K p =  (I+ p2 - k~') '/~. 

(2.8) 

(2.9) 

and for the continuum 

With this relationship each term of (2.7) is an exact 
solution of (13.3) 

The expansion (2.7) automatically satisfies two of the 
boundary conditions (2.1) and (12.7) but not the third 
(12.6). In  order to satisfy (12.6) we determine a, b, and 
C, by the variational conditions' 

ars/axj=o 
arT/axj= o 

X j = a ,  Arg(b),C, n=3;  .,N+2. (2.10) 

N is the number of terms, beyond the first two, in- 
cluded in the expansion (2.7) and 

W 

I T =  1 @ 0 @ ) ( ~ ~ = ~ 2 )  ('dr 

OH. S. Massey and B. L. Moiseiwitsch, Proc. Phys. SOC. 
(London) A66,406 (1953). Our case (i) asymptotic wave form was 
suggested by this paper. 

R. Karplus and L. S .  Rodberg, Phys. Rev. 115, 1058 (1959). 
Our case (ii) asymptotic form was taken from this paper. 
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TABLE I. Satisfaction of the diagonal boundary condition Z S = Z T = O  at various incident momenta kl. 

k1 (atomic units) 0.8662 0.9 0.94 0.95 1.0 1.1 1.2 -1.5 

Is 
IT 

1 X l W  3X1C6 2x10-5 3s 1 X 1 P  5X10-* 2XlO-t 4 X l W  1 X l W  
3X1W6 2X1W6 3x10-6 threshold 1 X l W  1X1W8 2X1Wa 4X1W3 1 X l P  

Since a and the (C,) are complex, 2N+3 real equa- 
tions result from (2.10). These equations are linear in 
the C,, hence 2N of them may be solved immediately 
to obtain the (C,) in terms of Re(a), Im(a), and Arg(b). 
The procedure followed is analogous to that outlined 
in part four of I, although some of the integrals involved 
are slightly different in form. The integrals were ob- 
tained in analytic form and were checked by numerical 
integration. However, in the singlet case due to the 
difficulty of the numerical integrations the analytic 
results were in sonie cases only checked to one or two 
significant figures. In  order to obtain sufficient accuracy 
it was necessary to solve for the C, using double pre- 
cision arithmetic; Le. 16 significant figures were retained 
in the calcuiations. Tne remairing thicc equa ths   re 
highly nonlinear in Re(a), Im(a), and Arg(b) and were 
therefore solved numerically. All calculations were done 
on the IBM 7094 computer of the Theoretical Division 
of the Goddard Space Flight Center. 

III. THE SCATTERING MATRIX 

If an exact solution were obtained for the zeroth-order 
Eq. (I3.3), then the reciprocity condition* should be 
fuliilled and the scattering cross sections ~ 2 ~ 2 .  and 
u ~ ~ - 1 ~  could also be obtained from this same calculation. 
Although we have no direct check on how closely the 
reciprocity condition is fulfilled, it is expected that when 
IS and IT are small enough, reciprocity is satisfied to an 
accurate degree of approximation. The cross section 
uzs--le follows immediately from the reciprocity condi- 
tion, one form of which is 

UZs-la = (~l/Kz)z~la-z*. 

It is however necessary to introduce the scattering 
matrix S in order to obtain u2,zi. 

Many forms of the asymptotic boundary condition, 
Eq. (2.1), have been introduced by various authors. 
Two of the more common variations are of the following 
types : 

lim @O(O) (r .1~~)  = (sinklrl+ Tlleiklrl)R1,(r~) 
Ti- + (K2/K1)1/2Tlze’klrlRz,(rz) , (3.1) 

lim @,@) = (e-ikiri-Slleikzri )Ria (12) 
q+m 

- (Kz/K1)1/2S12eik~rlRz.(~~) . (3.2) 

* A derivation of the reciprocity theorem as it applies to scat- 
tering matrices is given by J. M. Blatt and V. F. Weisskopf, 
Theoretical Ntulear Physics (John Wiley & Sons, Inc., New York, 
1952), p. 528. 

In (3.1) the T;j are elements of the transmission 
matrix T while in (3.2) the Si, are the elements of the 
scattering matrix S. The coefficient ( K Z / K ~ ) ” ~  multi- 
plying TI2 and S I 2  is introduced so that T;j and S;j will 
be symmetric. 

Equations (2.1) and (3.1) are related in the following 
way : 

T11=klaA*/IA I z ,  (3.3) 

Tlz=Kl(kl/Kz)”2bA*/[ A 1’. (3.4) 

S= 1+2iT. (3.5) 

The S and T matrices defined by (3.1) and (3.2) are 
related by 

Here 1 is the unit matrix. 

current, then it will be unitary: 

SSt=l. 

If the reciprocity condition also holds, then the S matrix 
will be symmetric : 

From (3.6) SZZ may be found to be 

If the S matrix is required to coilserve piobabilit;. 

(3.6) 

s 1 2 = s z 1 .  (3.7) 

(3.8) szz= - s 1 1 * s 1 s 2 1 /  I SlZ I 2. 

ais~ji.=alG;j-s;jlz/K,2, (3.9) 

Finally, the reaction cross sections are given by the 
formula 

where 6;j is the Kronecker delta function. The uzS-2. 

thus obtained are listed in Table VI. 

N. INTERNAL CONSISTENCY OF THE SOLUTION 

The integrals IS and IT, w. (2.11), should ideally be 
zero. Presumably if enough terms could be taken in the 
wave-function expansion, (2.7), this should occur to an 
arbitrary precision, however, for N >  8 the determinant 
of the Cj, ( j =  1, N ) ,  was generally too small for accurate 
results to be obtained. By trial and error sets of terms 
in the expansion were chosen which minimized IS and 
IT. The confidence we have in our results depends both 
on the smallness of IS and IT, and on the consistency 
of the cross sections obtained by choosing different sets 
of virtual eigenstates. The magnitude of the obtainable 
Is and IT are shown in Table I. As can be seen IS and 
IT are both quite small for energies less than that re- 
quired to excite the 3s level of hydrogen. As soon as the 
3s threshold is passed, there is a marked increase in the 
size of the diagonal integrals (particularly in the singlet 
case). The size of the diagonal integral continues to 
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TABLE 11. Investigation of the internal consistency of the singlet nonadiabatic calculations. This table is discussed in Sec. IV. 
- 

ki Is U1.--211 Uld-1"  Virtual states 
Atomic 
units Case (i) Case (ii) Case (i) Case (ii) Case (i) Case (ii) Discrete Continuum 

0.9 3X1WG lXIO-G 
0.9 1x10-6 7x10-6 
0.9 lX10-4 5X10-5 
0.9 5X1W4 3 X 1 C 4  
0.9 8X1W4 7X10-4 
1.0 5x10-3 3X1W3 
1.0 7 X l V  4X1W3 
1.5 1x10-' 8x10-2 

0.0339 0.0338 
0.0339 0.0339 
0.0334 0.0335 
0.0309 0.0310 
0.0289 0.0291 
0.0469 0.0488 
0.0463 0.0481 
0.0131 0.0196 

0.4674 
0.4674 
0.4676 
0.4680 
0.4672 
0.3263 
0.3283 
0.0958 

increase out to 30.6 eV. At these higher energies there 
is also a marked decrease in the agreement of the cross 
sections obtained by choosing different sets of virtual 
continuum states. Again this was most bothersome in 
the singlet case. 

For the singlet case this behavior is illustrated in 
Table I1 by the two top entries for K1=0.9 and the 
entries for k l =  1.0 and K 1 =  1.5. These entries represent 
some of the better runs obtained at  these energies. The 
uncertainty in the singlet results can be gauged by com- 
paring case (i) and case (ii) results. [In Table I1 the 
cross sections are in units of irao2 and the statistical 
weight t is included. The columns labeled Discrete and 
Continuum virtual states refer to the n and p included 
in (2.7).] At the higher energies the triplet results seem 
to be quite a bit more accurate than the singlet results. 

I t  should be remarked that it is an assumption that 
the zeroth-order Eq. (13.3) can be exactly satisfied 
subject to the more limited asymptotic boundary con- 
dition (2.1) in an energy domain in which we know that 
the 3s state, for example, is accessible. The above dis- 
parity in the quality of results on the two sides of the 
3s threshold may tend to indicate that this assumption 
is in fact incorrect. However, it is our opinion that the 
chief difficulty above the 3s threshold is not in the 
boundary condition (2.1) but in the loss of flexibility in 
the wave function in the region of interaction caused 
by the absence of the 3s state. Partial confirmation of 
this can be found in the last four k1=0.9 entries in 
Table I1 which illustrate the effect of omitting various 
low energy discrete virtual states from the expansion. 
Nevertheless because there is a provision for including 
a flexible choice of continuum states, we feel that any 
theoretical incompleteness in our expansion above 12.1 
eV can be largely compensated for. 

A more relevant question is how these cross sections 
will change by virtue of the redistribution of current 
when the totality of open channels is included. Clearly 
the present calculation cannot answer that question, 
although in some sense the assumption must be made 
that their effect is small. For if it were not, then the 
calculation of scattering in the ionization region would 
be a complete impossibility, because their inclusion 
would entail a wave function containing not only a dis- 
crete infinity of bound excited states but a dense in- 

0.4674 3;4 0.05, 0.3, 0.6, 0.9, 1.1 
0.4674 0.05, 0.3, 0.5, 0.7, 0.9, 1.1 
0.4676 4 0.05. 0.3. 0.5. 0.7, 0.9, 1.1 
0.4684 
0.4680 . . . 0.2. 0.4. 0.6. 0.75. 0.9. 1.05 

. . . 0.05; 0.3; 0.5; 0.7; 0.9; 1.1, 1.3 

0.3290 
0.3319 

. . . 

. . . 0.05, 0.25, 0.45, 0.65,'0.85, 1.0, 1.15, 1.30 
0.05, 0.3, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 

0.1126 . . .  1.15, 1.23, 1.33, 1.43, 1.53, 1.63 

finity of ionized states as well. It is our opinion therefore 
that in close coupling, for example, when additional 
states are added a t  an energy where they may be 
excited their main effect arises from the increased flexi- 
bility they allow the wave function in the region of 
interaction rather than in the opening of the channels 
that they afford. Thus the present method, which places 
virtually no restriction on the number of terms that can 
describe the wave function in the region of interaction, 
is expected to contain most of the effects on the 1s and 
2s channels of a close-coupling expansion with a similar 
number of terms. 

V. EFFECTIVE RANGE EXPANSION ABOUT 
THE 2s THRESHOLD 

A final check was made to insure that our calculation 
was compatible with previous nonadiabatic (NA) 
calculations below the 2s threshold. Ross and Shawg 
have recently dcveloped a multichannel effective-range 
theory. This is an extension of the ordinary (single 
channel) effective-range theory which can in principle 
describe all channels of a reaction both above and below 
the threshold for a new channel. The correlation is 
accomplished in terms of an M matrix whose elements 
around threshold may be expanded in a power series 
in the energy. The first two of these coefficients reduce 
essentially to the scattering length and effective range 
in the one channel case. The M matrix has been used 
by Damburg and Peterkop5 to extrapolate the results 
of 1s- 2s close-coupling calculations immediately above 
the 2s threshold to infer the elastic scattering below 
threshold. In the same spirit we have extrapolated our 
present NA results to below threshold. In  this case, 
however, the extrapolation was in the nature of a check 
as the NA results below threshold have already been 
calculated.1° For compatibility the extrapolated values 

M. H. Ross and G. L. Shaw,Ann. Phys. (N. Y . )  13,147 (1961). 
loA. Temkin and R. Pohle, Phys. Rev. Letters 10, 22 (1963). 

I t  should be emphasized that only results of the zeroth-order or 
relative s-wave problem of this reference are being considered and 
these show only one resonance. On the other hand, the inclusion 
of higher relative partial waves introduced more resonances. Cf. 
the erratum to the above, Phys. Rev. Letters 10, 268 (1963); 
A. Temkin, NASA Tech. Note D-1720 (unpublished) ; A. Temkin, 
in Proceedings of the Third International Conference on the Physics of 
EZectronic and Atomic Collisions (North-Holland PulAshing 
Company, Amsterdam, to be published); and Ref. 12. 
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FIG.. 1. Comparison of the singlet nonadiabatic (1s-Is) cross 
section (solid line) near the 2s threshold with effective-range 
extrapolations. Circles are the nonadiabatic effective-range ex- 
trapolation. Triangles are the (1s-2s) closecoupling effective- 
range extrapolation of Damburg and Peterkop. 

of uls-l. should then closely match the computed 
zeroth-order NA ula--lS below threshold. The usefulness 
of this check was brought home in our present calcula- 
tions, when the values which had been computed at an 
earlier stage gave an extrapolated singlet uls-la that was 
not compatible with the explicitly calculated values 
below threshold. This helped lead to the discovery of 
a machine programming error which had caused earlier 
singlet results to indicate a spuriously high peak in 
uls-2s cross section just above the 2s threshold." 

The T and M matrices are related for relative s-wave 
scattering by the equationg 

T=K"2(M--ik)k1'2. (5.1) 

In this equation k is considered to be a diagonal matrix 
with diagonal elements K ; .  The elastic scattering is then 
given by 

TABLE 111. The first two coefficients in the expansion of the 
M matrix elements at the 2s threshold, Eq. (5.3). 

NA = nonadiabatic 
- 

CC =close coupling' 
Singlet Triplet 

NA cc NA cc 
1.0610 r.300 0.0293 0.0301 

MZz(0) -0.0368 -0.0356 0.1208 0.1206 
5:: $j - 0.0569 -0.0629 -0.0017 -0.0017 

Rii 4.2267 4.82 

R22 11.489 11.54 
R12 -3.9292 -4.32 

1.1373 1.20 
0.0642 -0.06 
5.1528 5.14 

Close-coupling coefficients taken from Damburg and Peterkop (Ref. 5 ) .  

l1 H. L. Kyle and A. Temkin, in Proceedings of the Third Inter- 
national Conference on the Physics of Electronic and Atmnic CoUi- 
SMns (North-Holland Publishing Company, Amsterdam, to be 
published). 

~ 
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Expanding the elements of M;j about a reference 
incident-electron energy EO, we obtain 

Mij(E) =Mij(Eo)+$R;j(E-Eo)+ - - . (5.3) 

In  the effective range approximation the series is cut 
off after the second term. We take EO to be 10.2 eV, the 
energy required to excite hydrogen from the 1s to the 
2s state. The expansion is valid for E< 10.2 eV, but in 
this case we must put kZ=& in Eqs. (5.1) and (5.2). 

In the triplet case the expansion (5.3) is valid over a 
fairly long range, however in the singlet case the 
presence of a resonance just below the 2s threshold 
sharply limits the applicability of the expansion. Ac- 
cording to the analysis of Ross and Shaw: the effective 
range approximate formalism can describe only one 
narrow resonance below threshold. Below this resonance 
the formalism will not accurately predict the true scat- 
tering cross section. 

Our expansion parameters M;j(Eo) and R;j were ob- 
caincd 5y i i t t i~g a two tenr, p!;zorrial of the form 
(5.3) to the computed values of M;j in the range 
0<k22_<1.5X10-3. They are given in atomic units in 
Table 111 together with the coefficients obtained from 
the 1s- 2s close-coupling values by Damburg and 
Pe terk~p.~  In Fig. 1 the computed NA elastic cross 
section is compared with our effective range extrapola- 
tion. As can be seen the extrapolation quite accurately 
reproduces the resonance near k?= 0.797. The second 
peak a t  kl2=0.735 is spurious in the present zeroth- 
order problem but more resonances are actually present 
when relative p waves are included in the calculation.'0J2 

VI. RESULTS 

The results obtained for the spherically symmetric 
portion of the L=O scattering cross sections 
uls--ta, are shown in Tables IV to VI and in 
Figs. 1 to 3.  For comparison purposes the (1s-2s) 
close coupling results are also given. As previously 

[CLOSE COUPLING] 

MARRlOTT [TRIPLET x 21 

/ NONAOIABATIC [TRIPLET x 2IJ _/-- 

0 , 
10.2 15 20 25 30 

I t ,/---. '. ICLOSE COUPLIWGI 

-. 
v)  
VI 
0 a .. 

ELECTRON ENERGY [EV] 

FIG. 2. Comparison of zeroth-order nonadiabatic 1s-2s excitation 
cross section with the closecoupling 1s-2s expansion. 

1% M. Gailitis and R. Damburg, Proc. Phys. SOC. (London) 82, 
192 (1963). 
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TABLE IV. The spherically symmetric portion of the L=O elastic (1s-1s) cross section for the scattering of electrons 
by atomic hydrogen in units of TU#. NA= nonadiabatica; CC = close coupling 1s-2s.b 

Singlet Triplet Sum 
k1 (au) Energy (eV) NA cc NA cc NA cc 

0.810 
0.863 
0.864 
0.86429 
0.8645 
0.865 
0.8654 
0.8656 
0.8658 
0.866 
0.86601 
0.86602 
0.866025 
0.86604 
0.8661 
0.8662 
0.870 
0.880 

10.061 
10.132 
10.155 
10.163 
10.169 
10.179 
10.189 
10.194 
10.198 
10.203 
10.2033 
10.2036 

10.2040 
10.2055 
10.2085 
10.298 
10.536 

0.635 
0.760 
1.20 
1.337 
0.0 
0.2925 
0.3893 
0.4255 
0.4465 
0.4743 
0.4768 
0.4795 

case (i) case (ii) 
0.4790 0.4789 
0.4755 0.4754 
0.4742 0.4740 

0.4955 
0.4955 0.4954 

0.4244 
0.4235 
0.4541 
0.4568 

3.995 
3.994 
3.958 
3.864 

Threshold 

3.995 4.470 
3.993 4.468 
3.957 4.454 
3.864 4.359 

4.4194 
4.4165 
4.41 11 
4.3208 

0.89 10.777 0.4826 0.4825 0.4454 3.773 3.772 4.256 4.2174 
0.90 11.02 0.4674 0.4673 0.4324 3.684 3.684 4.151 4.1164 
0.94 12.02 0.399 0.399 3.349 3.748 
1 .o 13.605 0.327 0.330 0.2824 2.905 2.903 3.233 3.1854 
1.1 16.46 0.239 0.250 0.1865 2.300 2.297 2.550 2.4835 
1.2 19.6 0.175 0.190 0.1397 1.833 1.829 2.023 1.9687 
1.5 30.6 0.095 0.113 0.0905 0.974 0.9716 1 .087 1.062 1 

-The statistical factors t and $ are included in the cross sections. When available case (ii) results were u s d  to find the total scattering cross sections. 
b All close-coupling results were computed by K. Omidvar. Ref. 4. 

stated this latter calculation is a variational approxi- 
mate solution of the zeroth-order problem.' The internal 
consistency of our calculations has already been ex- 
tensively examined in Sec. IV. For the nonadiabatic 
entries in Tables IV-VI the number of significant 
figures given indicates the internal consistency of the 
calculation with the last significant figure being in 
doubt. For the singlet entries at K1= 1.5 even the first 
significant figure is uncertain. The NA singlet-case (i) 
cross sections are the ones which are plotted in those 
figures, however the case (ii) calculations are of equal 
weight. 

In  Fig. 2 the nonadiabatic ulS-ts cross sections are 
compared with the close-coupling expansion with the 
1s and 2s channels open. The close-coupling results just 
above threshold were kindly computed for us by 
Dr. Omidvar of the Theoretical Division of the Goddard 
Space Flight Center. They appear to be in good agree- 
ment with those of Damburg and Pe te rk~p .~  The other 
close-coupling results were obtained from Marriott2 
and Omidvar? which in turn are in good agreement with 
those of Smith and his co -~orke r s .~J~  The nonadiabatic 
results are about 40y0 lower than those of the close- 
coupling calculation. In  fact the case (i) nonadiabatic 
uls-2s cross sections agree quite well with the variational 
calculation of Massey and Moiseiwitsch.6 

Figure 3 shows the zeroth-order nonadiabatic elastic 
singlet cross section in the neighborhood of the thresh- 
old (10.203 eV) and out to 30 eV. A definite Wigner cusp 

13P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962). 

is indicated at threshold. The close-coupling results, 
dashed line, also indicate a cusp a t  threshold. Above 
30 eV the case (ii) nonadiabatic ulS-ls remains 2 v 0  
larger than the close-coupling results and as such are 
larger than the plotted case (i) results which at these 
energies are within 5% of the close-coupling values. 

The ula-ls curve is shown as varying smoothly above 
the 2s threshold. Actually tentative results indicate 
that there is probably a slight ripple in the elastic cross 
section just below the 3s excitation threshold. The mag- 
nitude of this ripple appears to be only a few percent 
of the total cross section and i t  is difficult to separate 
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FIG. 3. Comparison of the zeroth-order nonadiabatic elastic scat- 

tering cross section with the close-coupling 1s-2s expansion. 
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TABLE V. The spherically symmetric portion of the L=O (1s--2s) cross section for the excitation of atomic hydrogen 
by electrons in units &. NA=nonadiabatiP and CC=close coupling 13-2s. 

Singlet Triplet SUm 
NA 

k1 (au) Energy (eV) Case. (i) Case (ii) cc NA cc NA cc 
0.86604 
0.8661 
0.8662 
0.870 
0.880 
0.890 
0.90 
0.94 
1.0 
1.1 
1.2 
1.5 

10.2004 
10.20176 
10.2041 
10.294 
10.536 
10.776 
11.02 
12.02 
13.605 
16.46 
19.59 
30.61 

0.0066 0.0066 
0.0142 0.0142 0.0168 9.9x 10-6 
0.0204 0.0204 0.0266 1.5x10-6 

0.0354 0.0420 7.8X 1 0 - 6  
0.0313 0.0314 0.0356 1.8X1W4 
0.0318 0.0319 0.0355 2.7X 1W4 

0.0448 0.0448 9.1X1W4 
0.046 0.048 0.0725 1.9XlW 
0.035 0.040 0.0701 3.3X1W3 
0.031 0.039 0.0547 4.7Xl0-3 
0.013 0.019 0.0241 5.6X l W a  

0.0339 0.0338 0.0375 3 . 8 ~  10-4 

9 X  1W6 
1.6X 1W6 
8.3X10-6 
1.9XlW 
2.9X l(r 
4 X  lW 

2.1x10-1 
4.4Xl0-s 
6.1X10-1 
7.3x lo-' 

0.0066 
0.0142 
0.0204 
0.0355 
0.0316 
0.0322 
0.0342 
0.0457 
0.050 
0.043 
0.044 
0.025 

0.016s 
0.0266 
0.0420 
0.0358 
0.0322 
0.0379 

0.0746 
0.0745 
0.0608 
0.0314 

8 See Table IV footnotes. 

TABLE VI. The spherically symmetric portion of the (L=O)2s-2s cross section for the scattering of electrons by 
atomic hydrogen in units of ?r&. NA=nonadiabatic; CC = close coupling 1s-2s. 

Singlet Triplet sum 
NA 

k p  (au) Energy (eV) Case (i) Case. (ii) cc NA cc NA cc 
0.00503 0.0003 654 654 
0.0114 0.0018 622 622 650.3 205 827 
0.0174 0.0041 579 579 602 204 206.8 783 ' 808.8 
0.0831 0.094 137 135.55 170.6 172.3 307.6 307.85 
0.1562 0.332 19.6 19.6 19.36 110.4 110.5 130 129.86 
0.2052 0.573 3.69 3.6s 3.515 71.21 71.20 74.89 74.715 
0.245 0.819 0.441 0.441 0.3303 45.99 45.94 46.531 46.27 
0.365 1.82 0.43 0.41 7.37 7.78 
0.500 3.40 1.8 1.9 1.532 0.02 0.2102 1.92 1.7422 
0.678 6.26 1.8 1.8 1.115 1.37 1.36 3.17 2.475 
0.831 9.39 1.3 1.3 0.8980 2.45 2.112 3.75 3.010 
1.225 20.41 0.60 0.55 0.5702 1.94 1.811 2.49 2.3812 

See Table IV footnotes. 

.35c #-. 

CLOSE-COUPLING 
.30 1 

.os -=- 
U 

10.2 15 20 25 30 35 
ELECTRON ENERGY [EV] 

FIG. 4. The top four curves represent the total close-coupling 
theoretical and the experimental cross sections for the 1s-2s exat- 
ation of H by electron impact. The two bottom curves give the 
L=O, angle independent portion of this cross section. 

it  from the ordinary scatter in the calculated cross 
section a t  this point. This effect also occurs in the 
(1s-2s) and (2s-2s) channels, and it may be analogous 
to the resonance in ulJ-ls below the 2s threshold but 
much reduced in scale. 

Our triplet elastic cross sections agree with the close- 
coupling results to better than 1%. Since the triplet 
cross sections dominate in this region, the total non- 
adiabatic elastic cross section (a,+at) lies within 2% 
of the close-coupling result. 

It would be of interest to be able to solve the zeroth- 
order Eq. (13.3) exactly by numerical means. A con- 
tinuing effort is being made to do this with the non- 
iterative method which has already been used in the 
triplet case below thre~hold.'~ So far the results have 
been unsatisfactory. This is a t  least partly due to the 
large effective interaction radius between the 2s state 
of hydrogen and the scattered electron. 

"A. Temkin and E. Sullivan, Phys. Rev. 129, 1250 (1963). 
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VII. DISCUSSION 

Figure 4 compares the spherically symmetric portion 
of the inelastic cross section with the total close- 
coupling theoretical cross section and with the total 
experimental cross sections obtained by Stebbings 
et aZ.I5 and Lichten and Schultz.I6 Examination of the 
graph indicates that the nonadiabatic L=O, 1s-2s 
cross section is reduced from-the 1s- 2s close-coupling 
(CC) results by about the same percentage as the 
Lichten and Schultz cross section is reduced from the 
1s- 2s- 2p CC results around the region of maximum 
cross section (15 eV) or as the Stebbings et ul. are from 
the Lichten et al. results over most of the energy range. 
Thus this calculation reinforces what one would be 
tempted to believe on looking a t  the 1s- 2s- 2p results 
in comparison with the experimental results : a more 
exact theoretical calculation will reduce the theoretical 
cross section toward the experimental results. 

As to the amount of this decrease one must be infi- 
nitely more circumspect in guessing. In  the language of 
the nonadiabatic theory the L=O part of the ls-2s-2p 
calculation refers to the relative s f p  wave problem 
whereas the 1s- 2s calculation refers to only the relative 
s-wave problem. From that point of view, the latter 
appears to be a better approximation relative to its 
complete solution (to which the present paper is ad- 
dressed) than the former is to its complete solution. In  
either case, it might seem ridiculous to try to approxi- 
mate by two or three terms what in principle is de- 
scribed by a singly or doubly (discrete plus continuous) 
infinite set of functions. Here, however, one must recall 
what Seaton” long ago emphasized, that the explicit 
(anti) symmetrization of the wave function in fact 
doubles the number of terms and goes a long way in in- 
cluding the effects of the continuum in these calcula- 
tions. Secondly, with regard to the 1s-2s- 2p calcu- 

~ 

l6R. F. Stebbings, W. L. Fite, S. C. Hummer, and R. T. 

17M. J. Seaton, Phil. Trans. Royal SOC. London A245, 469 

Brackmann, Phys. Rev. 119, 1939 (1960). 

(1953). 

W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959). 

lation, the singlet L=O gives only the second largest 
contribution to uls-2s. The largest contribution comes 
from the triplet L= 1 state. Experience thus far indi- 
cates that the close-coupling approximation is much 
more accurate in triplet as opposed to singlet states. 

Thus i t  is very difficult a t  this time to infer the correct 
normalization of the experimental result. In  view of the 
many competing elements which are either included or 
left out of the close-coupling calculation, our own 
opinion is that the correct normalization of the experi- 
mental result is between those of Lichten et al. and 
Stebbings et ul. and closer to the latter, very close, in 
fact, to that curve where the error bars of the respective 
experiments overlap.11J8 This conclusion is supported 
by a recent (ls-2s-2p-3s-3p) close-coupling cal- 
culation by Taylor and Burke’g which produced more 
than a 30% decrease in  TI+^^ a t  16.5 eV from the close- 
coupling (1s- 2s- 2p) calculation.3*4 

Our results and those of Damburg and Peterkop5 also 
show that one must be very cautious in naively ex- 
trapolating cross sections to threshold using the Wigner 
threshold behavior law.2O The present results, Table V, 
indicate that the law’s range can be exceedingly small. 
When the 2p state is included in the calculation the 2s 
and 29 states are degenerate and Wigner’s threshold 
laws no longer necessarily apply.12 
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